Фізика: Класична механіка
  • Зміст
  • Вступне слово
  • Одновимірна кінематика
    • Механічний рух
    • Основні поняття одновимірної кінематики
    • Рівномірний прямолінійний рух
      • Вiдноснiсть швидкостей та перемiщень
      • Проекцiя вектора
      • Рiвняння руху
      • Проекцiя швидкостi та перемiщення
      • Середня швидкiсть
    • Рiвноприскорений прямолiнiйний рух
      • Миттєва швидкiсть
      • Прискорення та гальмування
      • Рiвняння рiвноприскореного прямолiнiйного руху
    • Вертикальний рух пiд дiєю сили тяжiння
  • Двовимірна кінематика
    • Характер двовимірного руху
    • Проекції швидкості
    • Практична частина
      • Дальність польоту, максимальна висота, час падіння
      • Тіло, що кинуте горизонтально
    • Градуси та радіани
    • Криволінійний рух
      • Тангенціальне та доцентрове прискорення
      • Загальна характеристика криволінійного руху
      • Рівномірний рух по колу
      • Виведення. Доцентрове прискорення (додатково)
      • Важливі приклади
  • Концепція сили
    • Інертність та маса
    • Сила: рівнодійна сила
    • Перший закон Ньютона
    • Другий закон Ньютона та сила тяжіння
    • Третій закон Ньютона
    • Реакцiя опори та пiдвiсу
    • Сила реакції опори та вага
    • Приклади. Рух у ліфті
      • Система тіл, що з'єднанні ниткою
    • Сила пружності та закон Гука
    • Послідовне та паралельне з'єднання пружин
  • Сила тертя
    • Сила тертя спокою
    • Сила тертя ковзання
      • Тiло на вертикальнiй стiнцi
    • Тiло на похилiй площинi
  • Динамiка та статика
    • Сили, що створюють доцентрове прискорення
      • Сила натягу нитки
      • Сила тиску
      • Сила тертя
    • Статика та умови рiвноваги
      • Перша умова рiвноваги
      • Друга умова рiвноваги та момент сили
    • Центр тяжiння та центр мас
    • Стiйкiсть рiвноваги
  • Iмпульс, робота, потужнiсть
    • Механiчна робота
      • Геометричний змiст роботи
      • Робота сили тяжiння
      • Робота сили пружностi
    • Робота та енергiя
      • Кiнетична енергiя
      • Консервативнi та неконсервативнi сили
      • Потенцiальна енергiя
      • Закон збереження механiчної енергiї
    • Потужнiсть та ККД
    • Iмпульс та його зв’язок з силою
      • Імпульс тіла і другий закон Ньютона
      • Закон збереження iмпульсу
    • Імпульс та кінетична енергія
      • Закони збереження, пружні та непружні зіткнення
      • Абсолютно пружне зіткнення
      • Абсолютно непружне зіткнення
      • Зіткнення у двох вимірах
  • Закон Всесвітнього тяжіння
    • Застосування закону збереження та розгляд Закону Всесвiтнього тяжiння
    • Супутники
    • Перша та друга космiчнi швидкостi
  • Механіка рідин та газів
    • Тиск
    • Атмосферний тиск
    • Закон Паскаля
    • Сполученi посудини
    • Закон Архiмеда
    • Закон Бернуллi
  • Додаток
    • Вектори
      • Рівність векторів
      • Координати векторів
      • Операції над векторами
Powered by GitBook
On this page

Was this helpful?

  1. Двовимірна кінематика

Градуси та радіани

PreviousТіло, що кинуте горизонтальноNextКриволінійний рух

Last updated 6 years ago

Was this helpful?

Цей розділ присвячений темi «Рiвноприскорений рух по колу». Щоб добре зрозумiти цей матерiал, необхiдно розiбратися з тим, що таке градусна та радiанна мiра кута. Невелика вступна частина для тих, хто не дуже знається на цьому

Визначення Градус (позначається $$^\boldsymbol\circ$$) – одиниця вимiрювання плоского кута. Прямий кут – $$90^\circ$$. Один повний оберт – $$360^\circ$$. Визначення Радiан (позначається «рад») вiдповiдає куту, що утворений двома радiусами та дугою, довжина $$(S)$$ якої дорiвнює радiусові кола $$(R)$$. $$1 \thinspace \text{рад} \approx 57.3^\circ$$. Один повний оберт – $$2\pi$$ рад. Як бачимо, радiан визначають через довжину дуги $$S$$. $$\theta \thinspace \text{(рад)} = \dfrac{S}{R}$$ Тобто, якщо $$2\pi$$ рад вiдповiдає куту $$360^\circ$$, то довжина дуги в даному разі дорiвнює довжинi кола $$L$$.

$$2\pi = \dfrac{L}{R} \Rightarrow L = 2 \pi R$$

Задача 1 ПЕРЕВЕДЕННЯ ОДИНИЦЬ

1. Перевести градуси: $$30^\circ, 60^\circ, 90^\circ, 270^\circ$$ у радiани.

2. Перевести радiани: $$\dfrac{\pi}{4}, \dfrac{2\pi}{3}, \dfrac{\pi}{2}, \dfrac{5\pi}{6}$$ у градуси.

Розв’язок Вiдповiдь ПриховатиРозв’язок.Оскільки $$2\pi \thinspace \text{рад} = 360^\circ$$, помноживши будь-який вираз на $$360^\circ$$ та подiливши на $$2\pi$$, ми не отримаємо ніяких змін. Так само й навпаки. Застосовуючи цей факт, ми i будемо одержувати необхiднi для переведення формули. Кут у радiанах $$=$$ Кут у градусах $$\cdot \thinspace \dfrac{2\pi}{360^\circ}$$$$30^\circ · \dfrac{2\pi}{360^\circ} = \dfrac{\pi}{6}$$ $$60^\circ · \dfrac{2\pi}{360^\circ} = \dfrac{\pi}{3}$$ $$90^\circ · \dfrac{2\pi}{360^\circ} = \dfrac{\pi}{2}$$ $$270^\circ · \dfrac{2\pi}{360^\circ} = \dfrac{3\pi}{2}$$ Кут у градусах $$=$$ Кут у радiанах $$\cdot \thinspace \dfrac{360^\circ}{2\pi}$$$$\dfrac{\pi}{4} · \dfrac{360^\circ}{2\pi} = 45^\circ$$ $$\dfrac{2\pi}{3} · \dfrac{360^\circ}{2\pi} = 120^\circ$$ $$\dfrac{\pi}{2} · \dfrac{360^\circ}{2\pi} = 90^\circ$$ $$\dfrac{5\pi}{6} · \dfrac{360^\circ}{2\pi} = 150^\circ$$ Вiдповiдь.Кут у радiанах $$=$$ Кут у градусах $$\cdot \thinspace \dfrac{2\pi}{360^\circ}$$$$30^\circ · \dfrac{2\pi}{360^\circ} = \dfrac{\pi}{6}$$ $$60^\circ · \dfrac{2\pi}{360^\circ} = \dfrac{\pi}{3}$$ $$90^\circ · \dfrac{2\pi}{360^\circ} = \dfrac{\pi}{2}$$ $$270^\circ · \dfrac{2\pi}{360^\circ} = \dfrac{3\pi}{2}$$ Кут у градусах $$=$$ Кут у радiанах $$\cdot \thinspace \dfrac{360^\circ}{2\pi}$$$$\dfrac{\pi}{4} · \dfrac{360^\circ}{2\pi} = 45^\circ$$ $$\dfrac{2\pi}{3} · \dfrac{360^\circ}{2\pi} = 120^\circ$$ $$\dfrac{\pi}{2} · \dfrac{360^\circ}{2\pi} = 90^\circ$$ $$\dfrac{5\pi}{6} · \dfrac{360^\circ}{2\pi} = 150^\circ$$