Фізика: Класична механіка
  • Зміст
  • Вступне слово
  • Одновимірна кінематика
    • Механічний рух
    • Основні поняття одновимірної кінематики
    • Рівномірний прямолінійний рух
      • Вiдноснiсть швидкостей та перемiщень
      • Проекцiя вектора
      • Рiвняння руху
      • Проекцiя швидкостi та перемiщення
      • Середня швидкiсть
    • Рiвноприскорений прямолiнiйний рух
      • Миттєва швидкiсть
      • Прискорення та гальмування
      • Рiвняння рiвноприскореного прямолiнiйного руху
    • Вертикальний рух пiд дiєю сили тяжiння
  • Двовимірна кінематика
    • Характер двовимірного руху
    • Проекції швидкості
    • Практична частина
      • Дальність польоту, максимальна висота, час падіння
      • Тіло, що кинуте горизонтально
    • Градуси та радіани
    • Криволінійний рух
      • Тангенціальне та доцентрове прискорення
      • Загальна характеристика криволінійного руху
      • Рівномірний рух по колу
      • Виведення. Доцентрове прискорення (додатково)
      • Важливі приклади
  • Концепція сили
    • Інертність та маса
    • Сила: рівнодійна сила
    • Перший закон Ньютона
    • Другий закон Ньютона та сила тяжіння
    • Третій закон Ньютона
    • Реакцiя опори та пiдвiсу
    • Сила реакції опори та вага
    • Приклади. Рух у ліфті
      • Система тіл, що з'єднанні ниткою
    • Сила пружності та закон Гука
    • Послідовне та паралельне з'єднання пружин
  • Сила тертя
    • Сила тертя спокою
    • Сила тертя ковзання
      • Тiло на вертикальнiй стiнцi
    • Тiло на похилiй площинi
  • Динамiка та статика
    • Сили, що створюють доцентрове прискорення
      • Сила натягу нитки
      • Сила тиску
      • Сила тертя
    • Статика та умови рiвноваги
      • Перша умова рiвноваги
      • Друга умова рiвноваги та момент сили
    • Центр тяжiння та центр мас
    • Стiйкiсть рiвноваги
  • Iмпульс, робота, потужнiсть
    • Механiчна робота
      • Геометричний змiст роботи
      • Робота сили тяжiння
      • Робота сили пружностi
    • Робота та енергiя
      • Кiнетична енергiя
      • Консервативнi та неконсервативнi сили
      • Потенцiальна енергiя
      • Закон збереження механiчної енергiї
    • Потужнiсть та ККД
    • Iмпульс та його зв’язок з силою
      • Імпульс тіла і другий закон Ньютона
      • Закон збереження iмпульсу
    • Імпульс та кінетична енергія
      • Закони збереження, пружні та непружні зіткнення
      • Абсолютно пружне зіткнення
      • Абсолютно непружне зіткнення
      • Зіткнення у двох вимірах
  • Закон Всесвітнього тяжіння
    • Застосування закону збереження та розгляд Закону Всесвiтнього тяжiння
    • Супутники
    • Перша та друга космiчнi швидкостi
  • Механіка рідин та газів
    • Тиск
    • Атмосферний тиск
    • Закон Паскаля
    • Сполученi посудини
    • Закон Архiмеда
    • Закон Бернуллi
  • Додаток
    • Вектори
      • Рівність векторів
      • Координати векторів
      • Операції над векторами
Powered by GitBook
On this page

Was this helpful?

  1. Iмпульс, робота, потужнiсть
  2. Імпульс та кінетична енергія

Зіткнення у двох вимірах

PreviousАбсолютно непружне зіткненняNextЗакон Всесвітнього тяжіння

Last updated 6 years ago

Was this helpful?

У всіх попередніх розділах ми розглядали центральний удар і, відповідно, рух в одному вимірі. Що відбувається у двох, трьох вимірах при нецентральному ударі? Та нічого особливого, крім того, що тепер закон збереження імпульсу записується не тільки для однієї осі, а для двох чи трьох, залежно від того, задача у площині чи в об’ємі.

Одразу розглянемо приклад:

Одна куля масою $$m_1$$ налітає на іншу масою $$m_2$$ зі швидкістю $$\vec{\upsilon}_1$$. Удар нецентральний, отже, маємо рух не в одному вимірі. Проте удар абсолютно пружний. Щоб краще уявити, про яку ситуацію мова, погляньте на приклад, зображений на рисунку.

Запишемо закон збереження імпульсу у векторній формі:

m1υ⃗1=m1υ⃗1′+m2υ⃗2′m_1 \vec{\upsilon}_1 = m_1 \vec{\upsilon}_1^\prime + m_2 \vec{\upsilon}_2^\primem1​υ1​=m1​υ1′​+m2​υ2′​

Тепер розписуємо рівняння по осі xxx та yyy. Розписуємо відразу враховуючи знак відповідних проекцій:

m_1 \upsilon_1 = m_1 \upsilon_1^\prime \cos \alpha + m_2 \upsilon_2^\prime \cos \beta $$

0 = m_1 \upsilon_1^\prime \sin \alpha - m_2 \upsilon_2^\prime \sin \beta

Знак «-» з’явився внаслідок того, що проекція швидкості другого тіла після зіткнення напрямлена протилежно до напрямку осі $$y$$. Також якщо ми маємо абсолютно пружне зіткнення, можна записати закон збереження кінетичної енергії:

\dfrac{m_1 \upsilon_1^2}{2} = \dfrac{m_1 {\upsilon_1^\prime}^2}{2} + \dfrac{m_2 {\upsilon_2^\prime}^2}{2}

Нагадую, що квадрат швидкості дорівнює сумі квадратів проекцій на $$x$$ та на $$y$$:

\upsilon^2 = \upsilon_x^2 + \upsilon_y^2

$$ Маючи ці рівняння, можна визначити все, що потрібно. Якщо ви будете мати справу з непружним зіткненням у двох вимірах, обов’язково пам’ятайте, що кінетична енергія не зберігається!