Фізика: Класична механіка
  • Зміст
  • Вступне слово
  • Одновимірна кінематика
    • Механічний рух
    • Основні поняття одновимірної кінематики
    • Рівномірний прямолінійний рух
      • Вiдноснiсть швидкостей та перемiщень
      • Проекцiя вектора
      • Рiвняння руху
      • Проекцiя швидкостi та перемiщення
      • Середня швидкiсть
    • Рiвноприскорений прямолiнiйний рух
      • Миттєва швидкiсть
      • Прискорення та гальмування
      • Рiвняння рiвноприскореного прямолiнiйного руху
    • Вертикальний рух пiд дiєю сили тяжiння
  • Двовимірна кінематика
    • Характер двовимірного руху
    • Проекції швидкості
    • Практична частина
      • Дальність польоту, максимальна висота, час падіння
      • Тіло, що кинуте горизонтально
    • Градуси та радіани
    • Криволінійний рух
      • Тангенціальне та доцентрове прискорення
      • Загальна характеристика криволінійного руху
      • Рівномірний рух по колу
      • Виведення. Доцентрове прискорення (додатково)
      • Важливі приклади
  • Концепція сили
    • Інертність та маса
    • Сила: рівнодійна сила
    • Перший закон Ньютона
    • Другий закон Ньютона та сила тяжіння
    • Третій закон Ньютона
    • Реакцiя опори та пiдвiсу
    • Сила реакції опори та вага
    • Приклади. Рух у ліфті
      • Система тіл, що з'єднанні ниткою
    • Сила пружності та закон Гука
    • Послідовне та паралельне з'єднання пружин
  • Сила тертя
    • Сила тертя спокою
    • Сила тертя ковзання
      • Тiло на вертикальнiй стiнцi
    • Тiло на похилiй площинi
  • Динамiка та статика
    • Сили, що створюють доцентрове прискорення
      • Сила натягу нитки
      • Сила тиску
      • Сила тертя
    • Статика та умови рiвноваги
      • Перша умова рiвноваги
      • Друга умова рiвноваги та момент сили
    • Центр тяжiння та центр мас
    • Стiйкiсть рiвноваги
  • Iмпульс, робота, потужнiсть
    • Механiчна робота
      • Геометричний змiст роботи
      • Робота сили тяжiння
      • Робота сили пружностi
    • Робота та енергiя
      • Кiнетична енергiя
      • Консервативнi та неконсервативнi сили
      • Потенцiальна енергiя
      • Закон збереження механiчної енергiї
    • Потужнiсть та ККД
    • Iмпульс та його зв’язок з силою
      • Імпульс тіла і другий закон Ньютона
      • Закон збереження iмпульсу
    • Імпульс та кінетична енергія
      • Закони збереження, пружні та непружні зіткнення
      • Абсолютно пружне зіткнення
      • Абсолютно непружне зіткнення
      • Зіткнення у двох вимірах
  • Закон Всесвітнього тяжіння
    • Застосування закону збереження та розгляд Закону Всесвiтнього тяжiння
    • Супутники
    • Перша та друга космiчнi швидкостi
  • Механіка рідин та газів
    • Тиск
    • Атмосферний тиск
    • Закон Паскаля
    • Сполученi посудини
    • Закон Архiмеда
    • Закон Бернуллi
  • Додаток
    • Вектори
      • Рівність векторів
      • Координати векторів
      • Операції над векторами
Powered by GitBook
On this page

Was this helpful?

  1. Одновимірна кінематика
  2. Рiвноприскорений прямолiнiйний рух

Прискорення та гальмування

PreviousМиттєва швидкiстьNextРiвняння рiвноприскореного прямолiнiйного руху

Last updated 6 years ago

Was this helpful?

Визначення Рівноприскорений прямолінійний рух – рух, під час якого за будь-які однакові проміжки часу швидкість тіла змінюється на однакові величини.

Прискорення рівноприскореного прямолінійного руху – векторна величина, яка дорівнює відношенню зміни швидкості тіла до проміжку часу, за який ця зміна відбулася: $$\vec{a} = \dfrac{\vec{\upsilon}-\vec{\upsilon}_0}{\Delta t}$$

У системі SI – $$\dfrac{\text{м}}{\text{с}^2}$$

Під час рівноприскореного прямолінійного руху: 1. Прискорення постійне – a⃗=const\vec{a}=consta=const 2. Проекція швидкості – пряма лінія, кут нахилу якої визначає прискорення: υx(t)=υ0x+axt\upsilon_x(t)=\upsilon_{0x}+a_xtυx​(t)=υ0x​+ax​t

На рисунку зображено зміну швидкості на 111 м/с кожної наступної секунди. Побудуймо відповідний графік залежності проекції швидкості від часу υx(t)\upsilon_x(t)υx​(t):

Початкова швидкість, з якої ми почали розглядати рух υ0x=1\upsilon_{0x}= 1υ0x​=1 м/с →\rightarrow→ графік починається з точки (0,1)(0,1)(0,1). Кут нахилу прямої υx(t)\upsilon_x(t)υx​(t) визначає прискорення (аналогічно до визначення швидкості із графіку x(t)x(t)x(t)).

Що більший нахил прямої υx(t)\boldsymbol \upsilon_x(t)υx​(t), то більше прискорення ax\boldsymbol a_xax​.

Зв’язок з похідною Ви вже помітили схожість у визначенні проекції швидкості, як тангенса кута нахилу прямої $$x(t)$$, з визначенням проекції прискорення, як тангенса кута нахилу прямої $$\upsilon_x(t)$$. Похідна взагалі вказує на швидкість зміни величини. Проекція швидкості – це швидкість зміни координати, а проекція прискорення – це швидкість зміни проекції швидкості. У школі розглядається тільки рівноприскорений рух, але якщо б прискорення було змінним, то знадобилося б означення миттєвого прискорення, аналогічно до миттєвої швидкості, і виражалося б воно так: $$a_x=\lim\limits_{\Delta t\to0}\dfrac{\Delta \upsilon_x}{\Delta t}=\upsilon_x^\prime (t)=x^{\prime \prime}(t)$$ Отже, проекція швидкості – похідна від координати, проекція прискорення – похідна від проекції швидкості. А в курсі математики ви ще ознайомитесь з визначенням другої похідної, тобто «похідної від похідної» (саме це і зображує $$x^{\prime \prime}(t)$$).

Задача 1 РОБОТА З ГРАФІКАМИ

Розв’язання Вiдповiдь ПриховатиРозв’язання. Розгляньмо кожну ділянку окремо:Перша ($$t_1 = 0 \thinspace \text{c}, t_2 = 3 \thinspace \text{c}$$).Проекція прискорення:\[a_{1x} = -2 \thinspace \dfrac{\text{м}}{\text{c}^2}\]Тоді рівняння швидкості:\[\upsilon_{1x}=\upsilon_{0x}+a_{1x}t=2-2t\]Проекція швидкості через три секунди руху:\[\upsilon_{1x}(3)=-4 \thinspace \dfrac{\text{м}}{\text{c}}\]Друга ($$t_1 = 3 \thinspace \text{c}, t_2 = 5 \thinspace \text{c}$$).Проекція прискорення:\[a_{2x} = 4 \thinspace \text{м/c}^2\]Тоді рівняння швидкості:\[\upsilon_{2x}=\upsilon_{1x}+a_{2x}t=-4+4t\]Проекція швидкості за три секунди руху:\[\upsilon_{2x}(2)=4 \thinspace \text{м/c}\]Третя ($$t_1 = 5 \thinspace \text{c}, t_2 = 9 \thinspace \text{c}$$).Проекція прискорення:\[a_{3x} = 1 \thinspace \text{м/c}^2\]Тоді рівняння швидкості:\[\upsilon_{3x}=\upsilon_{2x}+a_{3x}t=4+t\]Проекція швидкості за чотири секунди руху:\[\upsilon_{3x}(4)=8 \thinspace \text{м/c}\]Вiдповiдь.Визначимо формулу швидкості для кожної з ділянок:Перша ($$t_1 = 0 \thinspace \text{c}, t_2 = 3 \thinspace \text{c}$$).\[\upsilon_{1x}=\upsilon_{0x}+a_{1x}t=2-2t\]Друга ($$t_1 = 3 \thinspace \text{c}, t_2 = 5 \thinspace \text{c}$$).\[\upsilon_{2x}=\upsilon_{1x}+a_{2x}t=-4+4t\]Третя ($$t_1 = 5 \thinspace \text{c}, t_2 = 9 \thinspace \text{c}$$).\[\upsilon_{3x}=\upsilon_{2x}+a_{3x}t=4+t\]