Фізика: Класична механіка
  • Зміст
  • Вступне слово
  • Одновимірна кінематика
    • Механічний рух
    • Основні поняття одновимірної кінематики
    • Рівномірний прямолінійний рух
      • Вiдноснiсть швидкостей та перемiщень
      • Проекцiя вектора
      • Рiвняння руху
      • Проекцiя швидкостi та перемiщення
      • Середня швидкiсть
    • Рiвноприскорений прямолiнiйний рух
      • Миттєва швидкiсть
      • Прискорення та гальмування
      • Рiвняння рiвноприскореного прямолiнiйного руху
    • Вертикальний рух пiд дiєю сили тяжiння
  • Двовимірна кінематика
    • Характер двовимірного руху
    • Проекції швидкості
    • Практична частина
      • Дальність польоту, максимальна висота, час падіння
      • Тіло, що кинуте горизонтально
    • Градуси та радіани
    • Криволінійний рух
      • Тангенціальне та доцентрове прискорення
      • Загальна характеристика криволінійного руху
      • Рівномірний рух по колу
      • Виведення. Доцентрове прискорення (додатково)
      • Важливі приклади
  • Концепція сили
    • Інертність та маса
    • Сила: рівнодійна сила
    • Перший закон Ньютона
    • Другий закон Ньютона та сила тяжіння
    • Третій закон Ньютона
    • Реакцiя опори та пiдвiсу
    • Сила реакції опори та вага
    • Приклади. Рух у ліфті
      • Система тіл, що з'єднанні ниткою
    • Сила пружності та закон Гука
    • Послідовне та паралельне з'єднання пружин
  • Сила тертя
    • Сила тертя спокою
    • Сила тертя ковзання
      • Тiло на вертикальнiй стiнцi
    • Тiло на похилiй площинi
  • Динамiка та статика
    • Сили, що створюють доцентрове прискорення
      • Сила натягу нитки
      • Сила тиску
      • Сила тертя
    • Статика та умови рiвноваги
      • Перша умова рiвноваги
      • Друга умова рiвноваги та момент сили
    • Центр тяжiння та центр мас
    • Стiйкiсть рiвноваги
  • Iмпульс, робота, потужнiсть
    • Механiчна робота
      • Геометричний змiст роботи
      • Робота сили тяжiння
      • Робота сили пружностi
    • Робота та енергiя
      • Кiнетична енергiя
      • Консервативнi та неконсервативнi сили
      • Потенцiальна енергiя
      • Закон збереження механiчної енергiї
    • Потужнiсть та ККД
    • Iмпульс та його зв’язок з силою
      • Імпульс тіла і другий закон Ньютона
      • Закон збереження iмпульсу
    • Імпульс та кінетична енергія
      • Закони збереження, пружні та непружні зіткнення
      • Абсолютно пружне зіткнення
      • Абсолютно непружне зіткнення
      • Зіткнення у двох вимірах
  • Закон Всесвітнього тяжіння
    • Застосування закону збереження та розгляд Закону Всесвiтнього тяжiння
    • Супутники
    • Перша та друга космiчнi швидкостi
  • Механіка рідин та газів
    • Тиск
    • Атмосферний тиск
    • Закон Паскаля
    • Сполученi посудини
    • Закон Архiмеда
    • Закон Бернуллi
  • Додаток
    • Вектори
      • Рівність векторів
      • Координати векторів
      • Операції над векторами
Powered by GitBook
On this page

Was this helpful?

  1. Двовимірна кінематика

Проекції швидкості

PreviousХарактер двовимірного рухуNextПрактична частина

Last updated 6 years ago

Was this helpful?

Визначення Миттєва швидкiсть спрямована по дотичнiй до траєкторiї в точцi, яку ми розглядаємо.

• Проекцiя на вертикальну вiсь Як вже зазначалося, вздовж вертикальної осі маємо рiвноприскорений рух. У випадку, коли вiсь спрямована вгору (протилежно до напрямку прискорення вiльного падiння):

$$\upsilon_y = \upsilon_{0y} - gt$$

• Проекцiя на горизонтальну вiсь У горизонтальному напрямку маємо рiвномiрний рух. Проекцiя швидкостi не змiнюється протягом всього руху.

$$\upsilon_x = \upsilon_{0x}$$

Із зазначеного вище зрозуміло, що проекцiя швидкостi на вiсь $$y$$ змiнюється протягом усього руху. Наприклад, на рисунку вище у першiй точцi $$\upsilon_y > 0$$, адже кут мiж дотичною та вiссю $$x$$ – гострий. У другiй точцi (верхня точка траєкторiї) $$\upsilon_y=0$$, кут дорiвнює нулеві. У третiй точцi $$\upsilon_y

Знайти кожну з проекцiй у певній точцi можна, знаючи модуль миттєвої швидкостi та кут мiж дотичною та вiссю $$x$$. Наприклад, якщо вiдомо, що тiло кинуто пiд кутом $$\alpha$$ до горизонту зi швидкiстю $$\upsilon$$.

Iз тригонометричних спiввiдношень у прямокутному трикутнику:

$$\upsilon_x = \upsilon \cos \alpha; \ \upsilon_y = \upsilon \sin \alpha$$

Iз теореми Пiфагора, знаючи проекцiї швидкостi, можемо знайти її модуль:

$$\upsilon = \sqrt{\upsilon_x^2 + \upsilon_y^2}$$

Кут мiж напрямком швидкостi та вiссю $$x$$ можна визначити також iз тригонометричних спiввiдношень:

$$tg \alpha = \dfrac{\upsilon_y}{\upsilon_x}$$

Задача 1 РОБОТА З ГРАФIКАМИ

Тiло кидають праворуч зi швидкiстю $$\upsilon$$ пiд кутом $$\alpha$$ до горизонту. Напрям вертикальної осi обрано вгору, горизонтальної – вправо. Намалюйте схематично графiки траєкторiї $$y(x)$$, проекцiй швидкостi $$\upsilon_x(t)$$ та $$\upsilon_y(t)$$.

Розв’язання Вiдповiдь ПриховатиРозв’язання.Розглянемо кожен графiк: Траєкторiя $$y(x)$$ Траєкторiя руху тiла, кинутого пiд кутом до горизонту, – парабола. Горизонтальна проекцiя швидкостi $$\upsilon_x(t)$$ Горизонтальна складова швидкостi не змiнюється протягом руху i дорiвнює проекцiї початкової швидкостi. Під час вибору осей таким чином, як зазначено в умовi, $$\upsilon_{0x} \gt 0$$. Отже, це пряма лiнiя, паралельна осi часу. Вертикальна проекцiя швидкостi $$\upsilon_y(t)$$ Вертикальна складова швидкостi безперервно змiнюється пiд дiєю прискорення вiльного падiння $$\vec{g}$$. Маємо рiвноприскорений рух.$$\upsilon_y = \upsilon_{0y}-gt$$ Під час вибору осей в такий спосіб, як зазначено в умовi, $$\upsilon_{0y} \gt 0$$. З плином часу ця проекцiя стає рiвною нулеві (верхня точка траєкторiї), а потiм проекцiя стає вiд’ємною (рух донизу).Вiдповiдь.

Тіло кинули під кутом $$60^\circ$$ до горизонту. Початкова швидкість дорівнює 30 м/с. Чому дорівнює проекція початкової швидкості на вісь $$x$$? 20 м/с 15 м/с 12 м/с 30 м/с Із тригонометричних співвідношень у трикутнику: $$\upsilon_x =$$$$ \upsilon \thinspace \cos \alpha \Rightarrow$$$$ \upsilon_x = 30 \cdot \dfrac{1}{2} = 15 \thinspace \text{(м/с)}$$

Чому дорівнює проекція початкової швидкості на вісь $$y$$? 20 м/с 25.5 м/с 15 м/с 30 м/с Із тригонометричних співвідношень у трикутнику: $$\upsilon_y =$$$$ \upsilon \thinspace \sin \alpha \Rightarrow$$$$ \upsilon_y =$$$$ 30 \cdot \dfrac{\sqrt{3}}{2} =$$$$ 30 \cdot \dfrac{1.7}{2} \approx$$$$ 30 \cdot 0.85 =$$$$ 25.5 \thinspace \text{(м/с)}$$