Проекція вектора

Щоб вмiло працювати з векторами та складними задачами, пов’язаними з ними, вводять систему координат. У школi використовують прямокутну Декартову систему координат.

Залежно вiд кiлькостi вимiрiв у задачi iснує мiнiмальна кiлькiсть осей, за допомогою яких можна однозначно задати всi необхiднi параметри векторiв. Наприклад, якщо рух здiйснюється вздовж прямої лiнiї, то достатньо ввести одну вiсь i розглядати рух вздовж цiєї осі. Якщо задача двовимiрна, то потрiбно вводити двi осі. Якщо ми маємо справу з задачею у тривимірному просторі, то потрiбно вводити три осi.

Пiсля того як введена система координат, починають розглядати проекцiї векторiв на цi осі.

Визначення
Проекцiя вектора на вiсь — це довжина вiдрiзка, який сполучає проекцiю на вiсь точки початку вектора та кiнця вектора.

Проекцiя вектора на вісь \[ \upsilon_x= | \thinspace \vec{\upsilon} \thinspace |\cos(\alpha) \]



Залежно вiд кута , проекцiя може бути вiд’ємною, додатньою або дорiвнювати нулевi (якщо вектор перпендикулярний осі).



Наступна тема – рiвняння руху, яке вже розглядають з погляду проекцiї на вiсь. Важливо, що осі для конкретної задачi обираються по-рiзному. Наприклад, проекцiя швидкостi може бути i додатньою, i вiд’ємною, те ж саме вiдбувається i з координатами. Водночас швидкiсть i шлях — це фiзичнi величини, вони завжди додатнi. Дуже важливо не плутати цi поняття.